PHYSICAL REVIEW E

VOLUME 52, NUMBER 35

Transient statistics in stabilizing periodic orbits
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The statistics of chaotic and periodic transient time intervals preceding the stabilization of a given
periodic orbit have been experimentally studied in a CO, laser with modulated losses, subjected to a
small subharmonic perturbation. As predicted by the theory, an exponential tail has been found in the
probability distribution of chaotic transients. Furthermore, a fine periodic structure in the distributions
of the periodic transients, resulting from the interaction of the control signal and the local structure of

the chaotic attractor, has been revealed.

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.Lt

INTRODUCTION

The problem of controlling chaotic systems has been
studied both theoretically and experimentally by many
authors. An efficient method for achieving control was
proposed by Ott, Grebogi, and Yorke [1]. Variations of
this method have been successfully used to stabilize opti-
cal chaos [2] and for tracking steady states [3]. Alterna-
tive implementations for controlling chaos to periodic or-
bits are based (i) on the use of a continuous delayed feed-
back [4], (ii) on the introduction of small modulations of
a control parameter [5,6], and (iii) on the knowledge of a
prescribed goal dynamics [7]. Anyway, although the gen-
eral processes characterizing different methods of control
are understood, several interesting features, such as the
transient approach to a stabilized orbit, have not been ex-
perimentally investigated.

In the present paper we report experiments on the
transient dynamics which precedes the stabilization of a
periodic orbit. In particular, we refer to a CO, laser
where chaos has been obtained via periodic modulation
(driving) of the cavity losses [8]. The stabilization of
periodic orbits has been achieved with a parametric per-
turbation having relative amplitude of a few percent and
frequencies in the ratios 1:2 and 1:4 with respect to the
driving signal [6]. In order to obtain the transient time
statistics, we have then applied a perturbation enveloped
by a rectangular signal. We call this configuration “ele-
mentary,” meaning that the perturbation is “open loop”
(i.e., it does not enter a feedback loop) and it contains
only the lowest subharmonic of the driving force.

Switching the perturbation on in a chaotic parameter
range, the motion appears to be irregular and indistin-
guishable from the motion on the chaotic attractor for a
certain time interval ¢,, before the stable orbit is ap-
proached [1,9]. First, we focused our attention on such a
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chaotic transient. It has been theoretically proved that
the length of the chaotic transient depends sensitively on
the initial conditions. If one considers randomly distri-
buted initial conditions, ¢, is expected to have an ex-
ponential probability distribution [1,9]. The analysis of
our data on a CO, laser gives the first experimental evi-
dence (to our knowledge) of this feature. The chaotic
transient ¢, is usually followed by a regular oscillation
converging with a monotonic behavior toward the stable
orbit, with a characteristic time ¢,. The experimental
probability distributions of the times ¢, show a periodic
envelope which can be interpreted as due to the interac-
tion of the control signal with the local periodic structure
of the chaotic attractor.

The above classifications in terms of ¢; and ¢, presents

"some analogies with the results reported by Tel [10] in

controlling transient chaos using the Ott, Grebogi, and
Yorke (OGY) method [1]. In fact, whenever a system ex-
ibits transient chaos, its phase space has an invariant set
called a chaotic saddle or repellor, together with an at-
tractor that is often periodic. As proved by Tel, it is pos-
sible to describe the escape from the repellor as separated
from the decay into the target region.

EXPERIMENTAL SETUP AND RESULTS

The experimental setup has been described in detail in
Ref. [6]. It consists of a single mode CO, laser with
sinusoidal modulation of the cavity losses «(z), realized
via an intracavity electro-optic modulator driven by a
voltage signal V' (1),

where L =2.0 m is the cavity length, T'=0. 10 is the total
transmission coefficient for a single pass, V', =4240 V is
the half-wave voltage, ¥, =600 V is a fixed bias voltage,
A =70 is an amplification factor, and f, =100 kHz is the
fundamental driving frequency. In order to achieve sta-
bilization on a given periodic orbit, a further amplitude

V(1)
A

=<
2L

K(t) 2T +(1—2T)sin?

Vin)y=Vy+V,A4sin(2wft),
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modulation with frequency f,=f,/2 is then applied to
the voltage V,

Vi(t)=V,[1+esin2mf,t +a)] .

€ is the relative amplitude of the perturbation and « is
the relative phase between the fundamental signal and the
perturbation itself. As demonstrated in Ref. [6], a pertur-
bation amplitude € of a few percent is sufficient to stabi-
lize different periodic orbits depending on the relative
phase a.

For the particular purpose of this experiment the rela-
tive phase is fixed at a value which assures the best per-
formance of control [6], and the perturbation signal is
gated by a square wave triggered with the reference out-
put of the master oscillator at 100 kHz (the response time
of this circuit is less than 1 us). The laser signal and the
gated signal have been stroboscopically recorded by a di-
gital oscilloscope with an external clock of period 7 =10
ps corresponding to f;. These signals are shown in Fig.
1 for two different cases: (a) transient from chaotic at-
tractor towards a stable orbit of period 2, with ¥, =1.35
V, €=0.070, and a=/2; (b) transient from chaotic at-
tractor towards a stable orbit of period 4, with ¥, =1.35
V, €=0.040, and a=m/2. When the control is activated,
the trajectory initially evolves as in the free running case
and, after the chaotic transient ¢,, it approaches the

—~ 1.0 T
o
c
> f
£
S
— 0.0t e — 4

(a) t, ta

control off [ control on

0 70 140
Time

—~ 1.0 T
2
c
=}
o)
—
o
N~—r
~ e “

b —_——

t, t,
control off control on

0] 70 140
Time
FIG. 1. Experimental stroboscopic recording of the laser in-
tensity I during a transient to a stable orbit of period 2(a) and
4(b). t; denotes the duration of the chaotic transient, ¢, the de-
cay to the selected stable orbit. (The horizontal scale is the time
measured in periods since the sampling interval is 10 us.)
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selected orbit of period 2 or 4 in a time interval ¢,.

The time interval ¢t =¢, +¢, is measured from the mo-
ment of the control switch on to the moment at which
the intensity levels of the stabilized signal [two levels in
Fig. 1(a), four levels in Fig. 1(b)] reach a threshold of
95% of their asymptotic values. Morphologically, ¢, cor-
responds to erratic fluctuations, whereas during ¢, the
signal displays a monotonic behavior (as shown in the
figures) and the separation of the two behaviors is always
marked by the appearance of a transient period-3 orbit.

The statistical distributions of ¢, and ¢, extracted from
the complete time series corresponding to Fig. 1(b) (148
transients) are shown in Fig. 2. Similar results have been
obtained from the data corresponding to Fig. 1(a). The
distributions of the time intervals ¢, [Fig. 2(a)] have been
fitted with an exponential law (solid line) having a time
constant of 9.4 periods. The histogram of the time inter-
vals #, is presented in Fig. 2(b). This figure clearly
demonstrates the presence of a mechanism which modu-
lates the probability distribution. This feature will be fur-
ther discussed in the next section. Finally, according to
the analysis of the data which reveals that ¢, and ¢, are
completely uncorrelated, the distribution of t=t¢,+¢,
also presents an exponential tail [Fig. 2(c), decay time of
13.6 periods].

A complementary approach to characterize the tran-
sient toward a stable orbit can be introduced. Consider,
for example, the case of Fig. 1(b) where a final period-4
orbit is reached. We can sample the signal with periodi-
city 4T and, identifying one of the four intensity levels,
we can reconstruct the statistical distribution of the in-
tensity at different times lying between the switch on and
the switch off of the control. Figure 3 shows the time
evolution of the first two moments of such a distribution,
i.e., its average and standard deviation. The data report-
ed in Fig. 3(a) can be successfully fitted with an exponen-
tial law which gives a time constant of 7.9 periods. Al-
though this “transient intensity” statistical method seems
easier to use, it presents the disavantage of washing out
all the fine structure details that are preserved by using
“transient time” statistics.

NUMERICAL ANALYSIS AND INTERPRETATION

The above statistical methods have also been applied to
data obtained from numerical simulations based on the
four-level model (4LM) [6]. Such a model, including the
coupling between the two resonant laser levels and their
rotational manifolds, has been demonstrated to provide
quantitative agreement with experiments on chaotic dy-
namics and controlling chaos. The 4LM consists of five
differential equations for the laser intensity 7, the popula-
tions N, and N, of the upper and lower lasing levels, and
the global populations M, and M, of the two manifolds
of rotational levels which are coupled by collisions with
N, and N;:

I=—kI+G(N,—N,I,
N2=_(Z'}’R +'}’2)N2_G(N2—N1 )I+‘VRM2+‘}/2P .

N1=_(27’R +Y N, +G(N; =N +yg M, ,
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M,=—(ypr+7v )M, +zygN,+zy,P,
Mlz_(VR +Y1MtzygN,,

where « is the intensity decay rate, y g =7.0X10° s ! is
. the relaxation rate between the lasing states and the asso-
ciated rotational manifolds (the enhancement factor
z =10 represents the number of sublevels considered in
each manifold), and y,=8.0X10* s~! and y,=1.0X 10*
s~! are the relaxation rates of the vibrational states.
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FIG. 2. Statistical analysis for the data corresponding to Fig.

1(b) (horizontal scale as in Fig. 1). (a) Probability distribution of

t,; the solid line represents the exponential fit (the error bars are
extimated as the square root of the number of counts in each

channel). (b) Histogram of the time intervals ¢,; the width of
(c) Probability distribution of

each bar is three periods.
t =t,+t, [error bars as in Fig. 2(a)]; the solid line represents an
exponential fit of the tail of the distribution.
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FIG. 3. Amplitude statistics of the data of Fig. 1(b); sampling
the signal every 40 us we have selected the points corresponding
to the upper intensity level of the period-4 stable attractor. (a)
Average intensity and (b) standard deviation, with horizontal
scale as in Fig. 1.

Moreover, G=6.2X 1078 s7! is the field-matter coupling
constant, while  the  adimensional  parameter
P =6.35X10" represents the pump (the numerical
values of the parameters are chosen by following Ref.
[6D.

As in the experiment, we focused our interest on the
stabilization of a given periodic orbit. Figure 4 shows a
stroboscopic recording of the laser intensity during a
transient from a chaotic to a period-4 stable orbit
(V;=1.40 V, £€=0.073, a=m/2). Also in this case, the
total time duration necessary for stabilization has been
separated into two parts, a chaotic transient of duration
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FIG. 4. Numerical simulation of the transition from a chaot-
ic to a period-4 stable orbit showing the chaotic transient ¢, and
the regular decay ¢, (horizontal scale as in Fig. 1).
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t; and a decay of duration t,. The characteristic ex-
ponential decays shown in Figs. 2(a) and 2(c) are well
reproduced in the numerical distributions of ¢, [Fig. 5(a),
time constant 9.6 periods] and of t=t¢,+¢, [Fig. 5(c),
time constant 12.6 periods], respectively. Regarding the
Lyapunov exponents, we note that the transition from
chaotic to stabilized period-4 orbit is characterized by a
change of the leading exponent A, from 1.96X10* to
—4.26X10° Hz. The inverse of this last value (=~23.5
periods) is comparable with the above evaluated decay
times. As regards the periodicity in the distribution of z,,
Fig. 5(b) clearly demonstrates the presence of this feature.
Here we have chosen a bar width of two periods in order
to emphasize the periodicity. This periodicity, however,
remains evident even if the distribution is calculated after
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FIG. 5. Time statistics as in Fig. 2 performed over the data
corresponding to Fig. 4 (with 960 transients).
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adding a random number between O and 2 to each value
of t,. This confirms that this feature is not an artifact
due to our choice of the bar width. It is also interesting
to observe that, due to the absence of noise, the numeri-
cal experiment reveals a finer structure than that shown
in Fig. 2(b).

A perturbative approach can provide a simple interpre-
tation of the modulation in the probability distribution of
t,. Let us first consider a period-N solution of a modulat-
ed system in the form

y~e2m/NTqcc.=x"Ntcec.,

where x =exp[i?™/T]. F=x+c.c. represents the unper-
turbed driving signal. In the case of small amplitude
modulation with period 27, the perturbed driving signal
F+ AF can be expressed as

F+AF=[1+&(x"?+c.c.)](x +c.c.),
AF=g(x +c.c.)(x?+c.c.) .

The perturbed solution y; can be expanded according to

Ox
aF

dy

AF .
dx

»1=y+

Taking into account the approximated expression for AF
and after some algebra, it is easy to verify that the correc-
tion in y, contains terms with the following fractional ra-
tios 7; (j =1-4) of the fundamental frequency:
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FIG. 6. Amplitude statistics as in Fig. 3 performed over the
data corresponding to Fig. 4.
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For the particular case corresponding to NV =4 the lowest
value of r; is ;. Considering this result, we suggest that
the periodicity of the observed echolike modulation is re-
lated to integer multiples of ri/T, that is, to the interac-
tion between the periodicity of the perturbation and that
of the trajectory.

Figure 6 reports the results obtained by applying
“transient intensity’’ statistics [the time constant for the
data of Fig. 6(a) is 8.0 periods].

CONCLUSIONS

To conclude, we have analyzed the transient statistics
in controlling chaos in a CO, laser with modulated losses
subjected to a gated control perturbation at the lowest
subharmonic of the fundamental driving force. The
statistics of the chaotic transients ¢, presents an exponen-
tial tail as predicted by the theory. Moreover, the pertur-
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bation, interacting with the local structure of the attrac-
tor, determines a periodic structure in the distribution of
the time ¢, which governs the decay toward the stabilized
orbit. Such a structure can be easily recognized by using
passage time statistics. In contrast, the complementary
approach, namely, the intensity statistics, does not give
evidence of this effect. Numerical tests both provide a sa-
tisfactory agreement with the experimental distributions
and confirm the differences between the two statistical
approaches.
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